Error reduction in density estimation under shape restrictions
نویسنده
چکیده
For the problems of nonparametric estimation of nonincreasing and symmetric unimodal density functions with bounded supports we determine the projections of estimates onto the convex families of possible parent densities with respect to the weighted integrated squared error We also describe the method of approx imating the analogous projections onto the respective density classes satisfying some general moment conditions The method of projections reduces the esti mation errors for all possible values of observations of a given nite sample size in a uniformly optimal way and provides estimates sharing the properties of the parent densities R ESUM E L auteur s int eresse au probl eme de l estimation non param etrique de fonctions de densit e non croissantes ou unimodales et sym etriques a support ni Il d etermine la projection d estimateurs non param etriques sur des familles con vexes de densit es de lois par rapport a l erreur quadratique pond er ee int egr ee Il d ecrit en outre une m ethode d approximation de projections analogues sur les classes de fonctions de densit e dont les moments satisfont a certaines conditions g en erales Cette technique de projection r eduit de fa con uniforme et optimale les erreurs d estimation pour toutes les valeurs possibles des observations d un echantillon ni donn e en plus de produire des estimations qui partagent cer taines des caract eristiques de la famille de lois choisie
منابع مشابه
Error reduction in density estima- tion under shape restrictions Running head: ERROR REDUCTION IN DENSITY ESTIMATION
For the problems of nonparametric estimation of nonincreasing and symmetric unimodal density functions with bounded supports we determine the projections of estimates onto the convex families of possible parent densities with respect to weighted integrated squared error. We also describe the method of approximating the analogous projections onto the respective density classes satisfying some ge...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملEstimation of Return to Scale under Weight Restrictions in Data Envelopment Analysis
Return-To-Scale (RTS) is a most important topic in DEA. Many methods are not obtained for estimating RTS in DEA, yet. In this paper has developed the Banker-Trall approach to identify situation for RTS for the BCC model "multiplier form" with virtual weight restrictions that are imposed to model by DM judgments. Imposing weight restrictions to DEA models often has created problem of infeasibili...
متن کاملWavelet Linear Density Estimation for a GARCH Model under Various Dependence Structures
We consider n observations from the GARCH-type model: S = σ2Z, where σ2 and Z are independent random variables. We develop a new wavelet linear estimator of the unknown density of σ2 under four different dependence structures: the strong mixing case, the β- mixing case, the pairwise positive quadrant case and the ρ-mixing case. Its asymptotic mean integrated squared error properties are ...
متن کاملThe silhouette, concentration functions, and ML-density estimation under order restrictions
Based on empirical Levy-type concentration functions a new graphical representation of the ML-density estimator under order restrictions is given. This representation generalizes the well-known representation of the Grenander estimator of a monotone density as the slope of the least concave majorant of the empirical distribution function. From the given representation it follows that a density ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006